Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 87(4): 2249-54, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25587636

RESUMO

Low-temperature plasma ionization, a technique that causes minimal fragmentation during ionization, is investigated as an ionization technique for mass spectrometric detection of the compounds in ambient organic aerosols in real time. The experiments presented in this paper demonstrate that ions are generated from compounds in the aerosol particles. The utility of this technique for detection of both positive and negative ions from the pyrolysate of multiple natural polymers is presented. Ultimately, low-temperature plasma ionization is shown to be a promising ionization technique for detection of compounds in organic aerosols by mass spectrometry.

2.
Environ Sci Technol ; 46(15): 7978-83, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22731120

RESUMO

Organosulfates have been proposed as products of secondary organic aerosol formation. While organosulfates have been identified in ambient aerosol samples, a question remains as to the magnitude of their contribution to particulate organic mass. At the same time, discrepancies have been observed between total particulate sulfur measured by X-ray fluorescence (XRF) spectroscopy and sulfur present as inorganic sulfate measured by ion chromatography (IC) in fine particulate matter. These differences could be attributed to measurement bias and/or the contribution of other sulfur compounds, including organosulfates. Using the National Park Service IMPROVE PM(2.5) database, we examined the disparity between the sulfur and sulfate measurements at 12 sites across the United States to provide upper-bound estimates for the annual average contributions of organosulfates to organic mass. The data set consists of over 150000 measurements. The 12 sites include Brigantine, NJ, Cape Cod, MA, Washington, DC, Chassahowitzka, FL, Great Smoky Mountains National Park, NC, Okefenokee, GA, Bondville, IL, Mingo, MO, Phoenix, AZ, San Gabriel, CA, Crater Lake National Park, OR, and Spokane, WA. These sites are representative of the different regions of the country: Northeast, Southeast, Midwest, Southwest and Northwest. We estimate that organosulfur compounds could comprise as much as 5-10% of the organic mass at these sites. The contribution varies by season and location and appears to be higher during warm months when photochemical oxidation chemistry is most active.


Assuntos
Aerossóis , Compostos Orgânicos/química , Enxofre/química , Espectrometria por Raios X
3.
J Air Waste Manag Assoc ; 57(1): 14-30, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17269226

RESUMO

Subsequent to the 1997 promulgation of the Federal Reference Method (FRM) for monitoring fine particulate matter (PM2.5) in ambient air, U.S. Environmental Protection Agency (EPA) received reports that the DOW 704 diffusion oil used in the method's Well Impactor Ninety-Six (WINS) fractionator would occasionally crystallize during field use, particularly under wintertime conditions. Although the frequency of occurrence on a nationwide basis was low, uncertainties existed as to whether crystallization of the DOW 704 oil may adversely affect a sampling event's data quality. In response to these concerns, EPA and the State of Connecticut Department of Environmental Protection jointly conducted a series of specialized tests to determine whether crystallized oil adversely affected the performance of the WINS fractionator. In the laboratory, an experimental setup used dry ice to artificially induce crystallization of the diffusion oil under controlled conditions. Using primary polystyrene latex calibration aerosols, standard size-selective performance tests of the WINS fractionator showed that neither the position nor the shape of the WINS particle size fractionation curve was substantially influenced by the crystallization of the DOW 704 oil. No large particle bounce from the crystallized impaction surface was observed. During wintertime field tests, crystallization of the DOW 704 oil did not adversely affect measured PM2.5 concentrations. Regression of measurements with crystallized DOW 704 versus liquid dioctyl sebacate (DOS) oil produced slope, intercept, and R2 values of 0.98, 0.1, and 0.997 microg/m3, respectively. Additional field tests validated the use of DOS as an effective impaction substrate. As a result of these laboratory and field tests, DOS oil has been approved by EPA as a substitute for DOW 704 oil. Since the field deployment of DOS oil in 2001, users of this alternative oil have not reported any operational problems associated with its use in the PM2.5 FRM. Limited field evaluation of the BGI very sharp cut cyclone indicates that it provides a viable alternative to the WINS fractionator.


Assuntos
Poluição do Ar/análise , Monitoramento Ambiental/instrumentação , Óleos/química , Calibragem , Cristalização , Tamanho da Partícula , Reprodutibilidade dos Testes , Temperatura
4.
Phys Chem Chem Phys ; 8(38): 4468-75, 2006 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-17001415

RESUMO

The oleic acid ozonolysis in mixed oleic and myristic acid particles was studied in a flow tube reactor using single particle mass spectrometry. The change in reactivity was investigated as a function of the myristic acid concentration in these 2 micron particles. For pure oleic acid aerosol, the reactive ozone uptake coefficient, gamma, was found to be 3.4 (+/-0.3) x 10(-4) after taking secondary reactions into account. At the myristic acid crystallization point, where only 2.5% of the particle is in the solid phase, the uptake coefficient was reduced to 9.7 (+/-1.0) x 10(-5). This dramatic drop in the uptake coefficient is explained by the presence of a crystalline monolayer of myristic acid, through which ozone diffusion is reduced by several orders of magnitude, relative to liquid oleic acid. Scanning electron microscope images of the mixed particles confirm that the particle surface is crystalline when the myristic acid mole fraction exceeds 0.125. The findings of these experiments illustrate that particle morphology is important to understanding the reactivity of species in a mixed particle. The decay of myristic acid during the course of ozonolysis is explained in terms of a reaction with stabilized Criegee intermediates, which attack the acidic groups of the oleic and myristic acids with equal rate constants.


Assuntos
Ácido Mirístico/química , Ácido Oleico/química , Ozônio/química , Cristalização , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Tamanho da Partícula , Sensibilidade e Especificidade , Propriedades de Superfície , Fatores de Tempo
5.
J Phys Chem A ; 110(24): 7614-20, 2006 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-16774205

RESUMO

Reactive uptake coefficients for nitric acid onto size-selected (d(ve) = 102 and 233 nm) sodium chloride aerosols are determined for relative humidities (RH) between 85% and 10%. Both pure sodium chloride and sodium chloride mixed with magnesium chloride (X(Mg/Na) = 0.114, typical of sea salt) are studied. The aerosol is equilibrated with a carrier gas stream at the desired RH and then mixed with nitric acid vapor at a concentration of 60 ppb in a laminar flow tube reactor. At the end of the reactor, the particle composition is determined in real time with a laser ablation single particle mass spectrometer. For relative humidities above the efflorescence relative humidity (ERH), the particles exist as liquid droplets and the uptake coefficient ranges from 0.05 at 85% RH to >0.1 near the ERH. The droplet sizes, relative humidity and composition dependencies, are readily predicted by thermodynamics. For relative humidities below the ERH, the particles are nominally "solid" and uptake depends on the amount of surface adsorbed water (SAW). The addition of magnesium chloride to the particle phase (0.114 mole ratio of magnesium to sodium) facilitates uptake by increasing the amount of SAW. In the presence of magnesium chloride, the uptake coefficient remains high (>0.1) down to 10% RH, suggesting that the displacement of chloride by nitrate in fine sea salt particles is efficient over the entire range of conditions in the ambient marine environment. In the marine boundary layer, displacement of chloride by nitrate in fine sea salt particles should be nearly complete within a few hours (faster in polluted areas)-a time scale much shorter than the particle residence time in the atmosphere.

6.
Environ Sci Technol ; 40(6): 1843-8, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16570606

RESUMO

A flow-tube reactor was used to study the formation of particles from alpha-pinene ozonation. Particle phase products formed within the first 3-22 s of reaction were analyzed online using a scanning mobility particle sizer and two particle mass spectrometers. The first, a photoionization aerosol mass spectrometer (PIAMS), was used to determine the molecular composition of nascent particles between 30 and 50 nm in diameter. The second, a nano-aerosol mass spectrometer (NAMS), was used to determine the elemental composition of individual particles from 50 nm to below 10 nm in diameter. Molecular composition measurements with PIAMS confirm that both the stabilized Criegee intermediate and hydroperoxide channels of alpha-pinene ozonolysis are operative. However, these channels alone cannot explain the high oxygen content of the particles measured with NAMS. The carbon-to-oxygen mole ratios of suspected nucleating agents are in the range of 2.25-4.0, while the measured ratios are from 1.9 for 9 nm particles to 2.5 and 2.7 for 30 and 50 nm particles, respectively. The large oxygen content may arise by cocondensation of small oxygenated molecules such as water or multistep reactions with ozone, water, or other species that produce highly oxygenated macromolecules. In either case, the increasing ratio with increasing particle size suggests that the aerosol becomes less polar with time.


Assuntos
Aerossóis , Poluentes Atmosféricos/análise , Monoterpenos/química , Oxidantes Fotoquímicos/química , Ozônio/química , Poluentes Atmosféricos/química , Monoterpenos Bicíclicos , Carbono/análise , Espectrometria de Massas , Oxigênio/análise , Tamanho da Partícula , Água/química
7.
J Phys Chem A ; 109(28): 6242-8, 2005 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16833964

RESUMO

Fine particles of cholesterol were reacted with ozone under pseudo-first-order conditions in an aerosol bag reactor. Gas-phase ozone was monitored using an ozone meter. Particle size distribution functions were determined using a scanning mobility particle sizer, which selected particle sizes for introduction into a photoionization aerosol mass spectrometer (PIAMS). PIAMS was used to determine the concentration of cholesterol in the aerosol as a function of reaction time. Dilution corrected rate coefficients were used to calculate the reactive uptake coefficient for ozone onto cholesterol particles as (2.8 +/- 0.4) x 10(-6). Uptake was found to be independent of particle diameter for the sizes studied (100 and 200 nm), suggesting that the uptake is surface mediated. The reaction products were also collected on filters and analyzed by electrospray ionization (ESI) mass spectrometry with both direct infusion and liquid chromatography sample introduction. The main primary reaction products contained one, two, or three oxygens added to the cholesterol moiety. Secondary oligomeric products were also observed, consisting of covalently bound dimers and trimers. Tandem mass spectrometry was used to confirm the expected structures of these compounds. The dimers appear to be acyl hydroperoxides, consistent with a previously reported mechanism for the reaction in a nonparticipating solvent. Finally, the magnitude of the uptake coefficient confirms that cholesterol is suitable as a local source tracer for source apportionment of ambient organic aerosol.

8.
Environ Sci Technol ; 38(5): 1428-34, 2004 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15046344

RESUMO

The formation of oligomeric molecules, an important step in secondary organic aerosol production, is reported. Aerosols were produced by the reaction of alpha-pinene and ozone in the presence of acid seed aerosol and characterized by exact mass measurements and tandem mass spectrometry. Oligomeric products between 200 and 900 u were detected with both electrospray ionization and matrix-assisted laser desorption ionization. The exact masses and dissociation products of these ions were consistent with various combinations of the known primary products of this reaction ("monomers") with and/or without the expected acid-catalyzed decomposition products of the monomers. Oligomers as large as tetramers were detected. Both aldol condensations and gem-diol reactions are suggested as possible pathways for oligomer formation. Exact mass measurements also revealed reaction products that cannot be explained by simple oligomerization of monomers and monomer decomposition products, suggesting the existence of complex reaction channels. Chemical reactions leading to oligomer formation provide a reasonable answer to a difficult problem associated with secondary organic aerosol production in the atmosphere. It is unlikely that monomers alone play an important role in the formation and growth of nuclei in the atmosphere as their Kelvin vapor pressures are too high for them to significantly partition into the particle phase. Polymerization provides a mechanism by which partitioning to the particle phase becomes favored.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/análise , Polímeros/análise , Monitoramento Ambiental , Compostos Orgânicos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Volatilização
9.
Anal Chem ; 76(2): 253-61, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14719868

RESUMO

A new method, photoionization aerosol mass spectrometry (PIAMS), is described for real-time analysis of organic components in airborne particles below approximately 300 nm in diameter. Particles are focused through an aerodynamic lens assembly into the mass spectrometer where they are collected on a probe in the source region. After a sufficient amount of sample has been collected, the probe is irradiated with a pulsed infrared laser beam to vaporize organic components, which are then softly ionized with coherent vacuum ultraviolet radiation at 118 nm (10.5 eV). Since the photon energy is close to the ionization energies of most organic compounds, fragmentation is minimized. Both aliphatic and aromatic compounds of atmospheric relevance are detected and quantified in the low- to midpicogram range. The photoionization signal intensity increases linearly with the amount of material sampled and is independent of particle size. The fragmentation induced by laser desorption is greater than that observed with thermal vaporization, suggesting that the internal energy imparted by the former is greater. Although some molecular fragmentation is observed, mass spectra from common sources of ambient organic aerosol are distinguishable and consistent with previous off-line measurements by gas chromatography/mass spectrometry. These results illustrate the potential of PIAMS for molecular characterization of organic aerosols in ambient and smog chamber measurements.

10.
Environ Sci Technol ; 37(15): 3268-74, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12966969

RESUMO

The performance of the real-time single-particle mass spectrometer RSMS III is evaluated for ambient fine and ultrafine particle number concentration measurements. The RSMS III couples aerodynamic size selection with laser ablation time-of-flight mass spectrometry for single-particle analysis. It was deployed at the Baltimore particulate matter Supersite for semi-continuous operation over an 8-month period. The sampling protocol adopted for this study permitted the analysis of on average 2000 particles per day. The number of particles analyzed is a tradeoff between generating a statistically significant data set and maintaining instrument operation over a long period of time. The optimum particle size range of analysis was found to be ca. 50-770 nm in diameter, although particles as small as 45 nm and as large as 1250 nm were also analyzed. While nitrate, sulfate, and carbon (elemental and organic) were found to dominate the ambient aerosol, over 10% of the detected particles contained transition and/or heavy metals. The (size-dependent) detection efficiency, defined as the fraction of particles entering the inlet that are analyzed, was determined by comparison with scanning mobility particle sizing data. Using the experimentally determined detection efficiencies, particle number concentrations of specific chemical components were estimated. While the sampling protocol allowed the particle concentrations of major chemical components to be followed as a function of both time and particle size, minor components required averaging over time and/or size to achieve adequate precision.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Resíduos Perigosos , Espectrometria de Massas/métodos , Aerossóis , Baltimore , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...